Approximating Attractors of Boolean Networks by Iterative CTL Model Checking
نویسندگان
چکیده
This paper introduces the notion of approximating asynchronous attractors of Boolean networks by minimal trap spaces. We define three criteria for determining the quality of an approximation: "faithfulness" which requires that the oscillating variables of all attractors in a trap space correspond to their dimensions, "univocality" which requires that there is a unique attractor in each trap space, and "completeness" which requires that there are no attractors outside of a given set of trap spaces. Each is a reachability property for which we give equivalent model checking queries. Whereas faithfulness and univocality can be decided by model checking the corresponding subnetworks, the naive query for completeness must be evaluated on the full state space. Our main result is an alternative approach which is based on the iterative refinement of an initially poor approximation. The algorithm detects so-called autonomous sets in the interaction graph, variables that contain all their regulators, and considers their intersection and extension in order to perform model checking on the smallest possible state spaces. A benchmark, in which we apply the algorithm to 18 published Boolean networks, is given. In each case, the minimal trap spaces are faithful, univocal, and complete, which suggests that they are in general good approximations for the asymptotics of Boolean networks.
منابع مشابه
An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.
Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the enti...
متن کاملA SAT-Based Algorithm for Computing Attractors in Synchronous Boolean Networks
This paper addresses the problem of finding cycles in the state transition graphs of synchronous Boolean networks. Synchronous Boolean networks are a class of deterministic finite state machines which are used for the modeling of gene regulatory networks. Their state transition graph cycles, called attractors, represent cell types of the organism being modeled. When the effect of a disease or a...
متن کاملLU TP 04-43 Random maps and attractors in random Boolean networks
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. The topologies of random Boolean networks with one input per node can be seen as graphs of random maps. We introduce an approach to investigating random maps and finding analytical results for attractors in random Boo...
متن کاملRandom maps and attractors in random Boolean networks.
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. The topologies of random Boolean networks with one input per node can be seen as graphs of random maps. We introduce an approach to investigating random maps and finding analytical results for attractors in random Boo...
متن کاملCounting attractors in synchronously updated random Boolean networks
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. We here derive an expression for the number of attractors in the special case of one input per node. Approximating some other non-chaotic networks to be of this class, we apply the analytic results to them. For this a...
متن کامل